• 资讯
  • 报告
当前位置:中研网 > 结果页

中国人工智能芯片行业投资战略研究 我国发展人工智能具有良好基础

中国人工智能芯片行业投资战略研究

一、人工智能芯片企业投资战略

我国发展人工智能具有良好基础。国家部署了智能制造等国家重点研发计划重点专项,印发实施了"互联网+"人工智能三年行动实施方案,从科技研发、应用推广和产业发展等方面提出了一系列措施。经过多年的持续积累,我国在人工智能领域取得重要进展,国际科技论文发表量和发明专利授权量已居世界第二,部分领域核心关键技术实现重要突破。语音识别、视觉识别技术世界领先,自适应自主学习、直觉感知、综合推理、混合智能和群体智能等初步具备跨越发展的能力,中文信息处理、智能监控、生物特征识别、工业机器人、服务机器人、无人驾驶逐步进入实际应用,人工智能创新创业日益活跃,一批龙头骨干企业加速成长,在国际上获得广泛关注和认可。加速积累的技术能力与海量的数据资源、巨大的应用需求、开放的市场环境有机结合,形成了我国人工智能发展的独特优势。

同时,也要清醒地看到,我国人工智能整体发展水平与发达国家相比仍存在差距,缺少重大原创成果,在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面差距较大;科研机构和企业尚未形成具有国际影响力的生态圈和产业链,缺乏系统的超前研发布局;人工智能尖端人才远远不能满足需求;适应人工智能发展的基础设施、政策法规、标准体系亟待完善。

面对新形势新需求,必须主动求变应变,牢牢把握人工智能发展的重大历史机遇,紧扣发展、研判大势、主动谋划、把握方向、抢占先机,引领世界人工智能发展新潮流,服务经济社会发展和支撑国家安全,带动国家竞争力整体跃升和跨越式发展。

二、人工智能芯片行业投资战略

就目前人工智能主要发展方向来看,可投资的垂直细分领域主要包括,机器人芯片研发、智能视觉、自然语言理解和开放知识图谱、人工智能教育、围棋AI、机器视觉、机器人系统方案、体感人机交互、智能投顾、智能视觉等。而所有细分领域中,核心专用芯片是人工智能时代的战略制高点。

投资基础研究:在计算视觉、自然语言处理、决策推理等领域构筑数据高效(更少的数据需求)、能耗高效(更低的算力和能耗),安全可信、自动自治的机器学习基础能力

打造全栈方案:打造面向云、边缘和端等全场景的、独立的以及协同的、全栈解决方案,提供充裕的、经济的算力资源,简单易用、高效率、全流程的AI平台

投资开放生态和人才培养:面向全球,持续与学术界、产业界和行业伙伴广泛合作,打造人工智能开放生态,培养人工智能人才。

三、细分行业投资战略

目前以深度学习为代表的人工智能计算需求,主要采用GPU、FPGA等已有的适合并行计算的通用芯片来实现加速。在产业应用没有大规模兴起之时,使用这类已有的通用芯片可以避免专门研发定制芯片(ASIC)的高投入和高风险。但是,由于这类通用芯片设计初衷并非专门针对深度学习,因而天然存在性能、功耗等方面的局限性。随着人工智能应用规模的扩大,这类问题日益突显。

GPU作为图像处理器,设计初衷是为了应对图像处理中的大规模并行计算。因此,在应用于深度学习算法时,有三个方面的局限性:第一,应用过程中无法充分发挥并行计算优势。深度学习包含训练和推断两个计算环节,GPU在深度学习算法训练上非常高效,但对于单一输入进行推断的场合,并行度的优势不能完全发挥。第二,无法灵活配置硬件结构。GPU采用SIMT计算模式,硬件结构相对固定。目前深度学习算法还未完全稳定,若深度学习算法发生大的变化,GPU无法像FPGA一样可以灵活的配制硬件结构。第三,运行深度学习算法能效低于FPGA。

尽管FPGA倍受看好,甚至新一代百度大脑也是基于FPGA平台研发,但其毕竟不是专门为了适用深度学习算法而研发,实际应用中也存在诸多局限:第一,基本单元的计算能力有限。为了实现可重构特性,FPGA内部有大量极细粒度的基本单元,但是每个单元的计算能力(主要依靠LUT查找表)都远远低于CPU和GPU中的ALU模块;第二、计算资源占比相对较低。为实现可重构特性,FPGA内部大量资源被用于可配置的片上路由与连线;第三,速度和功耗相对专用定制芯片(ASIC)仍然存在不小差距;第四,FPGA价格较为昂贵,在规模放量的情况下单块FPGA的成本要远高于专用定制芯片。

因此,随着人工智能算法和应用技术的日益发展,以及人工智能专用芯片ASIC产业环境的逐渐成熟,全定制化人工智能ASIC也逐步体现出自身的优势。

深度学习算法稳定后,AI芯片可采用ASIC设计方法进行全定制,使性能、功耗和面积等指标面向深度学习算法做到最优。

AI技术是多层面的,贯穿了应用、算法机理、芯片、工具链、器件、工艺和材料等技术层级。各个层级环环紧扣形成AI的技术链。AI芯片本身处于整个链条的中部,向上为应用和算法提供高效支持,向下对器件和电路、工艺和材料提出需求。一方面,应用和算法的快速发展,尤其是深度学习、卷积神经网络对AI芯片提出了2-3个数量级的性能优化需求,引发了近年来AI片研发的热潮。另一方面,新型材料、工艺和器件的迅速发展,例如3D堆叠内存,工艺演进等也为AI芯片提供了显着提升性能和降低功耗的可行性,这个推动力来源于基础研究的突破。总体而言,这两类动力共同促进了AI芯片技术近年来的快速发展。

《2022-2027年中国人工智能芯片行业发展分析及投资风险预测报告》由中研普华人工智能芯片行业分析专家领衔撰写,主要分析了人工智能芯片行业的市场规模、发展现状与投资前景,同时对人工智能芯片行业的未来发展做出科学的趋势预测和专业的人工智能芯片行业数据分析,帮助客户评估人工智能芯片行业投资价值。

中研网公众号

关注公众号

免费获取更多报告节选

免费咨询行业专家

延伸阅读

推荐阅读

智慧停车行业发展模式 智慧停车行业发展规划研究

智慧停车是指将无线通信技术、移动终端技术、GPS定位技术、GIS技术等综合应用于城市停车位的采集、管理、查询、预订与...

2023水电站行业市场现状及发展前景分析

我国有丰富的水能资源,理论蕴藏量为6.9亿千瓦,经济可开发装机容量近4亿千瓦。为实现到2020年非化石能源占我国一次能...

2023糖尿病用药行业市场现状深度分析

糖尿病是一种以高血糖为特征的代谢性疾病。高血糖则是由于胰岛素分泌缺陷或其生物作用受损,或两者兼有引起。长期存在...

人工智能芯片行业投资特性分析 全球人工智能产业还处在高速变化发展中

人工智能芯片行业投资特性分析一、人工智能芯片行业壁垒分析目前全球人工智能产业还处在高速变化发展中,广泛的行业分...

有机化妆品市场发展前景分析 有机化妆品市场规模分析

有机化妆品指产品除了所含的植物成份,必须要由获得有机认证的有机植物提取物所组成外,产品中不能添加人工香料、色素...

劳动防护用品市场需求及发展分析 劳动防护用品市场分析

劳动防护用品市场需求及发展分析随着社会经济的发展和人们生活水平的提高,劳保用品的应用范围在扩大和延伸,使用量也...

猜您喜欢

【版权及免责声明】凡注明"转载来源"的作品,均转载自其它媒体,转载目的在于传递更多的信息,并不代表本网赞同其观点和对其真实性负责。中研网倡导尊重与保护知识产权,如发现本站文章存在内容、版权或其它问题,烦请联系。联系方式:jsb@chinairn.com、0755-23619058,我们将及时沟通与处理。

中研普华集团联系方式广告服务版权声明诚聘英才企业客户意见反馈报告索引网站地图 Copyright © 1998-2023 ChinaIRN.COM All Rights Reserved.    版权所有 中国行业研究网(简称“中研网”)    粤ICP备05036522号

研究报告

中研网微信订阅号微信扫一扫